Support

Lorem ipsum dolor sit amet:

24h / 365days

We offer support for our customers

Mon - Fri 8:00am - 5:00pm (GMT +1)

Get in touch

Cybersteel Inc.
376-293 City Road, Suite 600
San Francisco, CA 94102

Have any questions?
+44 1234 567 890

Drop us a line
info@yourdomain.com

About us

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec.

EN
Have any Questions? +01 123 444 555

High-Dimensional Cancer Data Visualization

Biomedical data are increasingly high-dimensional. It is nowadays possible to obtain expressions of tens of thousands of genes from tens of thousands of tissue samples. Such datasets have been compiled, among others, to study the genetic basis of various cancers.

We applied the deep autoencoder (a special type of deep neural network) to the largest publicly available dataset on gene expression of various cancers (Torrente et al., 2016. Identification of cancer related genes using a comprehensive map of human gene expression. PloS One, 11:e0157484.). It is a dataset of tens of thousands of tissue samples of various cancers. To test whether the deep neural network is able to preserve the intrinsic structure of the data, we fed the network with no information about the cancers from which the tissue samples were taken. And yet, samples of the same cancers were clearly combined in a two-dimensional representation. This means that the structure of the high-dimensional data was preserved despite the simplification provided by the deep auto-encoder.

Further questions regarding the Visualization?

Contact us here if you have any further questions or requests.

Please add 9 and 4.
Copyright 2020 AF Institute. All Rights Reserved.